Sujet : Analyse, Etude d une suite de racines d équations algébriques
1 page
Français

Sujet : Analyse, Etude d'une suite de racines d'équations algébriques

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
1 page
Français
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Informations

Publié par
Nombre de lectures 76
Licence : En savoir +
Paternité, pas d'utilisation commerciale, partage des conditions initiales à l'identique
Langue Français

Extrait

1.

1.a

1.b

1.c

1.d

2.

2.a

2.b

2.c

3.

3.a

3.b
3.c

3.d

4.

4.a

4.b

4.c


4.d

4.e

Etude d’une suite de racines d’équations algébriques

2+, montrer que l’équation

Pour∈ℕ∗, on considère l’équation+−1+⋯+2+=1 ..
En étudiant la fonctionϕ:ℝ+→ℝdéfinie parϕ()=+−1+⋯+
possède une unique solution positive.
Justifier que∈0,1 et qu’on a la relation(1−)=1−.
Etablir que la suite ( décroissante puis convergente.) est
Etablir que→0 et en déduire la limite de () .
On écrit=12(1+ε)avecε→0 .
En observant que (1+ε)+1=2+1ε,
établir la relation (+1)εln(1+ε)=(+1)εln 2+εlnε.
Déterminer alors la limite de (+1)εpuis celle de (1+ε)+1.
En déduire un équivalent simple de (ε) .
Dans cette question, on suppose=2 .
Par commodité on noteα=2au lieu de∀∈ℕ,∈1 2,1 .
On considère la fonction réelledéfinie pour≥0 par()=1+.
1
Simplifier(α) .
Montrer que si∈1 2,1 alors()∈1 2,1 .
On considère la suite récurrente réelle ( par :) définie
0=1 et∀∈ℕ,+1=() .
Justifier∀∈ℕ,+1−α≤23−α.
En déduire :−α≤23,
et déterminer la limite de la suite () .
Dans cette question, on suppose: 1 2,1→ et1 2,1=1 .
Par commodité, on poseβ=3.
On introduit la fonction réelledéfinie par()=2+1+1et o nsidn cos al erècér etiue ntreur leelré
 
( par :) définie0=1 et∀∈ℕ,+1=() .
Dresser le tableau de variation desurℝ+.
En déduire que∀∈ℕ,∈0,1 .
Justifier que (2 ( décroissante, que) est2+1) est croissante puis que ces deux suites sont convergentes.
On poseℓ=lim2et0∈1 2,1 .
Etablir(ℓ)=ℓ′et(ℓ′)=ℓ.
En déduire queℓest solution de l’équation : (ℓ2+1)(ℓ3+ℓ2+ℓ−1)=0 .
Conclure queℓ=β,ℓ=′βpuis déterminer la nature () .

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents