6th Grade California Science Standards

icon

40

pages

icon

English

icon

Documents

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

icon

40

pages

icon

English

icon

Ebook

Le téléchargement nécessite un accès à la bibliothèque YouScribe Tout savoir sur nos offres

  • exposé - matière potentielle : about the relationships between variables
  • exposé
6th Grade California Science Standards Plate Tectonics and Earth's Structure 1. Plate tectonics accounts for important features of Earth's surface and major geologic events. As a basis for understanding this concept: a. Students know evidence of plate tectonics is derived from the fit of the continents; the location of earthquakes, volcanoes, and midocean ridges; and the distribution of fossils, rock types, and ancient climatic zones. b.
  • objects by radiation
  • organism to organism through food webs
  • animal cells
  • life
  • organisms
  • energy
  • objects
  • 2 cells
  • cells
  • evidence
  • time
Voir icon arrow

Publié par

Nombre de lectures

24

Langue

English


Multivariable Mathematics with Maple
Linear Algebra, Vector Calculus
and Difierential Equations
by James A. Carlson and Jennifer M. Johnson
°c 1996 Prentice-Hall
Introduction :::::::::::::::::::::::::::::::::::::::::::::::::::::: 1
1. Introduction to Maple ::::::::::::::::::::::::::::::::::::::::::::: 3
1. A Quick Tour of the Basics :::::::::::::::::::::::::::::::::::: 4
2. Algebra ::::::::::::::::::::::::::::::::::::::::::::::::::::::: 6
3. Graphing ::::::::::::::::::::::::::::::::::::::::::::::::::::: 9
4. Solving Equations :::::::::::::::::::::::::::::::::::::::::::: 12
5. Functions :::::::::::::::::::::::::::::::::::::::::::::::::::: 15
6. Calculus 18
7. Vector and Matrix Operations ::::::::::::::::::::::::::::::: 24
8. Programming in Maple :::::::::::::::::::::::::::::::::::::: 27
9. Troubleshooting ::::::::::::::::::::::::::::::::::::::::::::: 35
2. Lines and Planes ::::::::::::::::::::::::::::::::::::::::::::::::: 36
1. Lines in the Plane ::::::::::::::::::::::::::::::::::::::::::: 36
2. Lines in 3-space :::::::::::::::::::::::::::::::::::::::::::::: 39
3. Planes in 3-space :::::::::::::::::::::::::::::::::::::::::::: 41
4. More about Planes 43
3. Applications of Linear Systems ::::::::::::::::::::::::::::::::::: 49
1. Networks :::::::::::::::::::::::::::::::::::::::::::::::::::: 49
2. Temperature at Equilibrium ::::::::::::::::::::::::::::::::: 52
3. Curve-Fitting | Polynomial Interpolation:::::::::::::::::::: 58
4. Linear Versus Polynomial Interpolation ::::::::::::::::::::::: 61
5. Cubic Splines :::::::::::::::::::::::::::::::::::::::::::::::: 64
4. Bases and Coordinates ::::::::::::::::::::::::::::::::::::::::::: 67
1. Coordinates in the Plane ::::::::::::::::::::::::::::::::::::: 67
2. Higher Dimensions 71
3. The Vector Space of Piecewise Linear Functions :::::::::::::: 74
4. Periodic PL Functions ::::::::::::::::::::::::::::::::::::::: 77
5. Temperature at Equilibrium Revisited :::::::::::::::::::::::: 82
5. A–ne Transformations in the Plane :::::::::::::::::::::::::::::: 86
1. Transforming a Square 87
2. Tr Parallelograms ::::::::::::::::::::::::::::::::: 89
3. Area ::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 91
4. Iterated Mappings | Making Movies with Maple ::::::::::::: 93
5. Stretches, Rotations, and Shears ::::::::::::::::::::::::::::: 95
6. Appendix: Maple Code for iter and film :::::::::::::::::::: 99
i
6. Eigenvalues and Eigenvectors :::::::::::::::::::::::::::::::::::: 101
1. Diagonal matrices :::::::::::::::::::::::::::::::::::::::::: 101
2. Nondiagonal Matrices ::::::::::::::::::::::::::::::::::::::: 102
3. Algebraic Methods 104
4. Diagonalization ::::::::::::::::::::::::::::::::::::::::::::: 109
5. Ellipses and Their Equations :::::::::::::::::::::::::::::::: 113
6. Numerical Methods ::::::::::::::::::::::::::::::::::::::::: 118
7. Least Squares | Fitting a Curve to Data :::::::::::::::::::::::: 124
1. A Formula for the Line of Best Fit :::::::::::::::::::::::::: 125
2. Solving Inconsistent Equations :::::::::::::::::::::::::::::: 132
3. The Stats Package :::::::::::::::::::::::::::::::::::::::::: 134
8. Fourier Series ::::::::::::::::::::::::::::::::::::::::::::::::::: 137
1. Periodic Functions 137
2. Computing Fourier Coe–cients ::::::::::::::::::::::::::::: 143
3. Energy ::::::::::::::::::::::::::::::::::::::::::::::::::::: 147
4. Filtering :::::::::::::::::::::::::::::::::::::::::::::::::::: 149
5. Approximations ::::::::::::::::::::::::::::::::::::::::::::: 150
6. Appendix: Almost Periodic Functions ::::::::::::::::::::::: 151
9. Curves and Surfaces 156
21. Curves in the Plane | Maps fromR toR :::::::::::::::::: 156
32. Curves inR ::::::::::::::::::::::::::::::::::::::::::::::: 160
3. Surfaces 160
4. Parametrizing Surfaces of Revolution :::::::::::::::::::::::: 162
10. Limits, Continuity, and Difierentiability 168
1. Limits | Functions fromR toR :::::::::::::::::::::::::::: 168
22. Limits | F fromR toR ::::::::::::::::::::::::::: 171
3. Continuity :::::::::::::::::::::::::::::::::::::::::::::::::: 172
4. Tangent Planes ::::::::::::::::::::::::::::::::::::::::::::: 174
5. Difierentiability 176
11. Optimizing Functions of Several Variables :::::::::::::::::::::: 181
1. Review of the One-Variable Case :::::::::::::::::::::::::::: 181
2. Critical Points and the Gradient 184
3. Finding the Critical Points :::::::::::::::::::::::::::::::::: 184
4. Quadratic Functions and their Perturbations :::::::::::::::: 186
5. Taylor’s Theorem in Two Variables ::::::::::::::::::::::::: 190
ii
6. Completing the Square :::::::::::::::::::::::::::::::::::::: 193
7. Constrained Extrema ::::::::::::::::::::::::::::::::::::::: 195
12. Transformations and their Jacobians ::::::::::::::::::::::::::: 201
1. Transforming the Coordinate Grid :::::::::::::::::::::::::: 202
2. Area of Transformed Regions ::::::::::::::::::::::::::::::: 205
3. Difierentiable Transformations :::::::::::::::::::::::::::::: 207
4. Polar Coordinates :::::::::::::::::::::::::::::::::::::::::: 210
5. The Area Integral ::::::::::::::::::::::::::::::::::::::::::: 212
6. The Change-of-Variables Theorem :::::::::::::::::::::::::: 214
7. Appendix: A–ne Approximations ::::::::::::::::::::::::::: 216
8. Appendix: Gridtransform ::::::::::::::::::::::::::::::::::: 217
13. Solving Equations Numerically ::::::::::::::::::::::::::::::::: 219
1. Historical Background :::::::::::::::::::::::::::::::::::::: 219
2. The Bisection Method 220
3. Newton’s Method for Functions of One Variable ::::::::::::: 222
4. Method for Solving Systems ::::::::::::::::::::::: 224
5. A Bisection Method for Systems of Equations ::::::::::::::: 228
6. Winding Numbers :::::::::::::::::::::::::::::::::::::::::: 229
14. First-order Difierential Equations ::::::::::::::::::::::::::::::: 235
1. Analytic Solutions 235
2. Line Fields ::::::::::::::::::::::::::::::::::::::::::::::::: 239
3. Drawing Line Fields and Solutions with Maple :::::::::::::: 243
15. Second-order Equations :::::::::::::::::::::::::::::::::::::::: 246
1. The Physical Basis :::::::::::::::::::::::::::::::::::::::::: 247
2. Free Oscillations :::::::::::::::::::::::::::::::::::::::::::: 247
3. Damped 251
4. Overdamping ::::::::::::::::::::::::::::::::::::::::::::::: 253
5. Critical Damping ::::::::::::::::::::::::::::::::::::::::::: 254
6. Forced Oscillations 255
7. Resonance :::::::::::::::::::::::::::::::::::::::::::::::::: 258
16. Numerical Methods for Difierential Equations :::::::::::::::::: 261
1. Estimating e with Euler’s Method ::::::::::::::::::::::::::: 261
2. Euler’s Method for General First-order Equations ::::::::::: 265
3. Improvements to Euler’s Method :::::::::::::::::::::::::::: 268
4. Systems of Equations ::::::::::::::::::::::::::::::::::::::: 270
iii
17. Systems of Linear Difierential Equations :::::::::::::::::::::::: 276
1. Normal Coordinates :::::::::::::::::::::::::::::::::::::::: 277
2. Direction Fields ::::::::::::::::::::::::::::::::::::::::::::: 281
3. Complex Eigenvalues ::::::::::::::::::::::::::::::::::::::: 283
4. Systems of Second-order Equations :::::::::::::::::::::::::: 288
iv
1
Introduction
The aim of this book, intended as a companion to a traditional text, is to
explore the notions of multivariable calculus using a computer as a tool to help
with computations and with visualization of graphs, transformations, etc. The
software tool we have chosen is Maple; one could as easily have chosen Mathe-
matica or Matlab. In some cases the computer is merely a convenience which
slightly speeds up the work and allows one to accurately treat more examples.
In others it is an essential tool since the necessary computations would take
many minutes, if not hours or days. We will, for example, use Maple to study
the temperature distribution in a thin at plate by reducing the problem to the
solution of a system of, say, one hundred equations in one hundred unknowns,
then using the resulting numerical data to construct a contour plot which shows
lines of equal temperature. All this could be done by hand, but it would be
laborious work indeed. Such problems would be out of reach without tools for
computation and visualization.
Di–cult computations and fancy pictures are, of course, not ends in them-
selves. We must understand the underlying mathematics if we are to know which
computations to do and which pictures to draw. Likewise we must develop our
own intellectual tools su–ciently well in order to understand, interpret, and
make use of the data and images that we \compute." Thus our focus will always
be on the mathematical ideas and their applications. The role of Maple is to
more vividly illustrate them and to widen the range of problems that we can
successfully solve.
To get the most from this book, the reader should work through the ex-
amples and exercises as they occur. For example, when the text mentions the
snippet of Maple code
> plot( cos(x) - (1/3)*cos(3x), x = -2*Pi..2*Pi );
the reader should try it out at his or her machine. This particular bit of Maple
will plot the graph of y = cosx¡ (1=3) cos 3x on the interval¡2…•x• 2….
Most chapters can be read independently of the others. However, it is best to
rst work through a good part of Chapter One. It is a brief guide to the essent

Voir icon more
Alternate Text