17 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

LIFTING OF S1 VALUED MAPS IN SUMS OF SOBOLEV SPACES

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
17 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

LIFTING OF S1-VALUED MAPS IN SUMS OF SOBOLEV SPACES PETRU MIRONESCU Abstract. We describe, in terms of lifting, the closure of smooth S1-valued maps in the space W s,p((?1, 1)N ;S1). (Here, 0 < s <∞ and 1 ≤ p <∞.) This description follows from an estimate for the phase of smooth maps: let 0 < s < 1, let ? ? C∞([?1, 1]N ;R) and set u = eı?. Then we may split ? = ?1 + ?2, where the smooth maps ?1 and ?2 satisfy (?) |?1|W s,p ≤ C|u|W s,p and ???2? sp Lsp ≤ C|u| p W s,p . (?) was proved for s = 1/2, p = 2 and arbitrary space dimension N by Bourgain and Brezis [3] and for N = 1, p > 1 and s = 1/p by Nguyen [14]. Our proof is a sort of continuous version of the Bourgain-Brezis approach (based on paraproducts). Estimate (?) answers (and generalizes) a question of Bourgain, Brezis, and the author [5]. 1. Introduction In [4], the authors addressed the problem of lifting of S1-valued maps in Sobolev spaces: (Ls,p) Given an arbitrary u ? W s,p(Q;S1), is there

  • brezis

  • any any yes

  • let now

  • then

  • s1-valued maps

  • let ? ?

  • bourgain- brezis argument

  • gagliardo-nirenberg embedding

  • since


Sujets

Informations

Publié par
Nombre de lectures 9
Langue English

Extrait

LIFTING OF S 1 -VALUED MAPS IN SUMS OF SOBOLEV SPACES
PETRU MIRONESCU
Abstract. We describe, in terms of lifting, the closure of smooth S 1 -valued maps in the space W s,p (( 1 , 1) N ; S 1 ). (Here, 0 < s < and 1 p < .) This description follows from an estimate for the phase of smooth maps: let 0 < s < 1, let ϕ C ([ 1 , 1] N ; R ) and set u = e ıϕ . Then we may split ϕ = ϕ 1 + ϕ 2 , where the smooth maps ϕ 1 and ϕ 2 satisfy ( ) | ϕ 1 | W s,p C | u | W s,p and kr ϕ 2 k sLp sp C | u | pW s,p . ( ) was proved for s = 1 / 2, p = 2 and arbitrary space dimension N by Bourgain and Brezis [3] and for N = 1, p > 1 and s = 1 /p by Nguyen [14]. Our proof is a sort of continuous version of the Bourgain-Brezis approach (based on paraproducts). Estimate ( ) answers (and generalizes) a question of Bourgain, Brezis, and the author [5].
1. Introduction In [4], the authors addressed the problem of lifting of S 1 -valued maps in Sobolev spaces: ( L s,p ) Given an arbitrary u W s,p ( Q ; S 1 ), is there a ϕ W s,p ( Q ; R ) such that u = e ıϕ ? Here, 0 < s < , 1 p < and Q = ( 1 , 1) N . The complete answer is [4]
space dimension N size of s size of sp answer to ( L s,p ) N = 1 any any yes N 2 0 < s < 1 0 < sp < 1 yes N 2 0 < s < 1 1 sp < N no N 2 0 < s < 1 sp N yes N 2 s 1 1 sp < 2 no N 2 s 1 sp 2 yes
The non existence results rely on two kinds of counterexamples: topological and analytical . Topological counterexamples. One may prove (see Proposition 1) that, if there is lifting in W s,p , then C ( Q ; S 1 ) is dense in W s,p ( Q ; S 1 ). Thus the answer to ( L s,p ) is no whenever C ( Q ; S 1 ) is not dense in W s,p ( Q ; S 1 ). When 1 sp < 2, the typical ”topological counterexample” is the Date : June 23, 2008. The author thanks H.-M. Nguyen for sending him the paper [14] and for stimulating discussions. He warmly thanks H. Brezis for his comments on the paper. 1
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text