background image

Second order Poincaré inequalities and CLTs on Wiener space

icon

16

pages

icon

English

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris

Découvre YouScribe et accède à tout notre catalogue !

Je m'inscris
icon

16

pages

icon

English

icon

Documents

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Niveau: Supérieur, Licence, Bac+2
Second order Poincaré inequalities and CLTs on Wiener space by Ivan Nourdin ? , Giovanni Peccati † and Gesine Reinert ‡ Université Paris VI, Université Paris Ouest and Oxford University Abstract: We prove infinite-dimensional second order Poincaré inequalities on Wiener space, thus closing a circle of ideas linking limit theorems for functionals of Gaussian fields, Stein's method and Malliavin calculus. We provide two applications: (i) to a new second order characterization of CLTs on a fixed Wiener chaos, and (ii) to linear functionals of Gaussian-subordinated fields. Key words: central limit theorems; isonormal Gaussian processes; linear functionals; multi- ple integrals; second order Poincaré inequalities; Stein's method; Wiener chaos 2000 Mathematics Subject Classification: 60F05; 60G15; 60H07 1 Introduction Let N ? N (0, 1) be a standard Gaussian random variable. In its most basic formulation, the Gaussian Poincaré inequality states that, for every di?erentiable function f : R? R, Varf(N) 6 Ef ?(N)2, (1.1) with equality if and only if f is a?ne. The estimate (1.1) is a fundamental tool of stochastic analysis: it implies that, if the random variable f ?(N) has a small L2(?) norm, then f(N) has necessarily small fluctuations.

  • dimensional poincaré

  • isonormal gaussian process

  • standard gaussian

  • malliavin

  • multi-dimensional

  • operator ?

  • gaussian subordinated

  • random variable

  • poincaré inequalities


Voir icon arrow

Publié par

Langue

English

y z
NN (0; 1)
f :R!R
0 2Varf(N)6Ef (N) ;
f
0 2f (N) L ( ) f(N)
X
1;2H F2D
X F DF
H
2VarF 6EkDFk ;H
F
X

y
z
inStein'sPmethoreferencesdifand200Malliaersionvintcalculus.shallWceCacoullosproofvidesometderivwWienerorstapplications:momen(i)UnivtoMoaivnewHousecondedorderrecocisonormalharacterizationSectionoffunctionalCLyTits(1.2)ontaPropxersionebasedddeWienerVI),c05,haos,Pand92000(ii)Email:toChenlinearerez-AbreufunctionalstheofhGaussian-subcalculus)ordfolloiParisnatedcesselds.ertKeyReinertwaordsThen,:GiocenistralinlimitIvtheorems;CLisonormaliGaussianformproelemencesses;oflinearelofunctiaovnevahniqueslLabs;etmMarieulti-88,plePinivan.nourdin@upmc.frtegrals;'XsecondNanorderuePLSToincar?Vinequalities;vStein'sal.metho6,d;andWandiInenerproc[10]heaoMalliasw2000erMathematicsinnite-dimensionalSub(1.1).jecteClassication:p60F05;v60G15;separable60H07Universit?1andInandtrobductionvin-dierenLetvelds,MalliaaneidenotedGaussNourdinofrandomfunctionalsvb,ethabstandardsGaussianlitiesrandomequalitvandariable.hasInaitssmostofbasiccform.ulation,3.1thewGaussianvPgeneraloincar?(1.2),inequalitcenyofstatesordersthat,theforelopevNoteerytdierenrobabtiabled?lesfunctionPierrefor(PtheoremscourrierlimitpllinkingJussieu,ideasris,rance.ofEquipcircleaaUnivclosingOuestuslathvspace,laWienerterre,onUinequalitiesPoincar?FPil.comorder[2],secondetinnite-dimensional,(1.1)[5,with7],equalitdr?yPif[10],andtheonlytherein.ifparticular,eresultsisvane.inThe(whicestimakmuseatethe(1.1)vinisalloatofundamenvtalthetowingolvofofstoLetcbhasticananalysis:Gaussianitroimpolieserthat,realifHilbthespacerandom(seev2),ariableletvGesineproeccatieanniWeAbstract:Malliahastiableaofsmall.UniversitythedvinOxforativnorm,ofthen,andbOuest,Paris,Universit?ahaselemennecessarilywithsmallaluesuctuations.anRelandaholdstiatoynspace(1.1)onhasTbandeeninequarstwithproyvfedonlyboincar?ytheNashofinconstan[14],pluandanthentrediscothevWienereredhaosbPyInChernoositioninb[9]w(beothproproeofsmoreusevHermiteofpinolynomials).olvingThetralGaussiantsParbitraryoincar?eninequalitandyonadmitstecextensionsdevinedsev[16].eralorderdirections,oraencompassingoirebPothilit?stheMocaseAl?atoires,ofersit?smoetVI,CurieDepartmenarisofBo?teUniv1y4Oxford,aSouthearks75252OxfordaX1CedexUK.Freinert@stats.ox.ac.Email:1Secondinnite-dimensional)eGaussiandelds,land,ofersit?non-GaussianarisprobaterrebD?fense,ilitAyendistributideoR?publique,nNansandA,seene.g.ersit?BakryarisetI,al.rance.[1],giovanni.peccati@gmaBobkoothtfunctionalsStatistics,ofersitmofulti-d1imePnRoad,sionalO(a3TG,nEmaildukpossiblyF =f(X ;:::;X )1 d
N (0; 1) X ;:::;X1 d
2VarF 6Ekrf(X ;:::;X )k ;1 d dR
rf f
F =f(X ;:::;X ) X ;:::;X1 d 1 d
N (0; 1) f
dd Hessf
rf
F
E(F ) =
2VarF = > 0 ZN ( ; ) d (F;Z)TV
F Z
p
2 5 1 14 4
4 4d (F;Z)6 E[kHessf(X ;:::;X )k ] E[krf(X ;:::;X )k ] ;TV 1 d 1 d dop R2
kHessf(X ;:::;X )k Hessf(X ;:::;X )1 d op 1 d
dW
X
2;4H F2D
2 2E (F ) = Var (F ) = > 0 ZN ( ; )
p
1h i1 10 442 4 4d (F;Z)6 E kD Fk E kDFk :W op H2
F
p
1h i1 10 42 4 44d (F;Z)6 E kD Fk E kDFk :TV op H2
2;4D
2 2D F H
2 H D F
op
2f7!hf;D FiH
rand(3.21).withseeet,isandacofthewsrandomla)theGaussianeenvwassessingetpapbdieren(1.4)ariableswherewithdistancetheariationy)vetotalhingthethey(seeb,denoteoutandthe,eb,),.tfunctionisoththesymmetricopwneratortlynormspofbtheess(random)ablemandatrix.Leof2.2]).laTheoremb[4,.(seestatewsandfollofoashasesIf,gois.ctAe,relationthatsucthehuppaswhere(1.4)classisMalliacalledSectionaasecondisorderofPeoincar?theinequalitnormyectral:hmidtitconietsanproovsomeedsepinert[4]vbandywithcomumebininGaussiangand(1.3)ofwitheenanLadequate3.2,variationersiontotalofinequalitStein'sonemethoonlydmatrix(seealsoeif.oing[4],.recen[addition8of,c24]).espInthe[16,meRemarkIn3.6]tthsuceagainrstariabletthatresultwThenttheThethenro(1.6)ofi.i.d.1.1tdetailedtiableSectiondenedAsnoteina4.2,elemencrucialaluesoint,isproTheoremwithleadsthatfurtherthvelluseful)towhiceratowequivnametheconof2Hilb(1.4)eratorareasspthatecialLinstancesariance.ofemisonormalucprhcmoreovergeneralrestimates,alwhicarhHilbcanspbee,obtainedletbmeanymatccomariablebiningAssSthattein'srandommethoadwandlaMalliaandvinwcalculustheonwan.innite-dimensionaletGaussian(3.21))space.SectionItdistanceisvthereforeThennaturalthetoyaskanwhethercanthethenresultsonofnot[16],canHessianbonecusesusedoneinthatotedrdperChatterjeetoerobtainta(1.5)generalinv,ersionlawofthe(1.4),absolutelyinontinuousvrolvingeatodistanceLtoesgueGaussianasurforthensmotiable.othwicefunctionalsisofharbitraryisinnite-dimensionali.i.d.Gaussianaree(wherelvds.theWoseesshallNoshoofwgradienthatisthe(1.3)answ,ervisTheprandomositivofe.ofIndeed,wiceonvin-dierenefunctionalsofformallytheinprin2;cipalthatacsmohievisemenrandomtstofvthisinpapifer(theistensortheductproaofitselfofandthewfollousedwingfactstatemen-knotw(casepreciseindicateTheopdenotesrthe(or,Walenasserstein,distance,spseeradius)(3.22)):theTheoremom1.1ert-Sc(Secondoporderecialinanite-dimensionaltainsP(1.2)oincar?inequalitw.opauthorsofofTheoremtheispresenint4.1.papdiscussederSectionpaoinptedtoutthatthat1.1thetonite-(anddimensionaleryStein-tinequalities,ypheeinequalitiesrandomleadingtractiontoRelation2D F
F = (F ;:::;F )1 d

qH q> 1 H q
qH H q X =fX(h);h2
Hg H
( ;F;P ) X
H E [X(h)X(g)] = hh;gi FH
X
q> 1 H q Xq
2L ( ;F;P ) fH (X(h));h2H;khk = 1gq H
2 2x q xq d
2 2H q H (x) = ( 1) e eq q qdx

qH =R q > 1 I (h ) =q!H (X(h))0 q q
qHp
q!k k q H q = 0 I (c) =c c2R
q q 0H
2L ( ;F;P )
Hq
2F2L ( ;F;P )
1X
F = I (f );q q
q=0
qf = E[F ] f 2H q > 1 F q > 00 q
J qq
2F2L ( ;F;P ) J F =I (f ) q> 0q q q
p qfe ; k > 1g H f2 H g2 Hk

(p+q 2r)r = 0;:::;p^q f g r H
,noonwrandpresensumtrecenth4einbasicexpansionelemenotstainedof,GaussiantheanalysisFandeMalliaasvinwherecalculusalsothatcenare23],used2in.this1.1,paptoer.equippTheypreaderSectioniswnreferredetoanthTheestandwboWienermonographsInb(2.7),yeryMalliaorthonormalvinresult[12]tandaNualarty[19]asforproancanybunexplainedductdenitionmooinequalitiesrhaosresult.3LetMallianecessaryItbexpansion)eInatorealwsseparabletegrableHilbpapertfollospace.ofFeorexploredanoy,newFofeofproletthpro(CLtheStein'stoMalliabforeatheb5)inthuniestensorforproductcofenSectioneandordenoteconbmappingyw(seeofleadwithwillprobabilities.theeassolinearciatedwandtensorthetsymmetricwithtenormnbsorandproWienerduoincar?ct.PWeeopwritev,preliminaryewvctisomea2derivcansecondosedtheinniteftheo.ersionsquarevvtoisindicateofanadmitsisonormalcGaussubsianlinearproCLcess(2.7)oSectionviserinequalitiestractedtrac,roleduniquelye[15]).nevedspaceonbsometheprobabilitopythespcacifelimitcondaasecalculus,olvideasvcircleinery..Thisvirtuallymea20,nasithatGivestimatesndingsisandaariable.ceneryteredandGaussianefamily,,actionwhosestandardcotionvquarianceiniFsangivtractionenrandomithenwithtermsellofastheTheoreminnerofprotheductdealsofSectionTheseeenbbyextended.ainequalitiesisometryinetergeseenvsymmetricconprohaoswcbWieneredxedthetodiedelongingdistancesboundsariablesandverandomthe.thWcetalso.assumeorthatconcernsofwiswritegeneratederators.bvinyolvingsequence,.resultsF.orisevell-knoery(Wienertohaoswthatlarecallhw3Sectionensure.thatbbdecompeinthetheaorthogonalthofWienerspacescfollohaosTherefore,ofyein,randomthatariableis,organizedtheerclosedthelinearrestsubspelds.athecewingofhaoticypordinatedtGaussianthefunctionalsofforariablesTvstudyrandomwforwheregenerated6,binyfurtherthe,randomthevnariablestiofcontheoftTheypareedetermined(1.5)yof.ersionorverya(seetowoteddenotedevyison7orthogonalSectionjection,eratorFinallynelds.s)ordinatedWienersubhaos.Gaussianparticular,forTstheoremsTtral,andwheremethoCLisninisthenthevinolinkingthtHermiteofptfulolynomialevdenedfruiasvandLethaosclosescandWiener21,on[16,seTcompleteCLsystemonn,.elyenectivconrespthecus,andfogeneralizes6ThisSection,andev5PreliminariesSection.ities.suWciofnshallconditionsthethetontreofwhicandmlorder.isWelemeneofwritevboyGaussianconav,let1X
f
g = hf;e
:::
e i
r
hg;e
:::
e i
r:r i i i i1 r H 1 r H
i ;:::;i =11 r
ef
g f
g2r r

Voir icon more
Alternate Text