18 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Long time asymptotics for two dimensional exterior flows with small circulation at infinity

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
18 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Niveau: Supérieur, Licence, Bac+2
Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity Thierry Gallay Institut Fourier UMR CNRS 5582 Universite de Grenoble I BP 74 38402 Saint-Martin-d'Heres, France Yasunori Maekawa Department of Mathematics Graduate School of Science Kobe University 1-1 Rokkodai, Nada-ku Kobe 657-8501, Japan February 17, 2012 Abstract We consider the incompressible Navier-Stokes equations in a two-dimensional exterior domain ?, with no-slip boundary conditions. Our initial data are of the form u0 = ??0 + v0, where ?0 is the Oseen vortex with unit circulation at infinity and v0 is a solenoidal perturbation belonging to L2(?)2 ?Lq(?)2 for some q ? (1, 2). If ? ? R is sufficiently small, we show that the solution behaves asymptotically in time like the self-similar Oseen vortex with circulation ?. This is a global stability result, in the sense that the perturbation v0 can be arbitrarily large, and our smallness assumption on the circulation ? is independent of the domain ?. 1 Introduction Let ? ? R2 be a smooth exterior domain, namely an unbounded connected open subset of the Euclidean plane with a smooth compact boundary ∂?.

  • moreover all constants

  • let ? ?

  • domain ?

  • exterior domains

  • moreover

  • oseen vortex

  • kinetic energy

  • conclusion similar


Sujets

Informations

Publié par
Nombre de lectures 13
Langue English

Extrait

Long-time asymptotics for two-dimensional exterior flows with small circulation at infinity
Thierry Gallay Yasunori Maekawa Institut Fourier Department of Mathematics UMR CNRS 5582 Graduate School of Science Universite´deGrenobleIKobeUniversity BP 74 1-1 Rokkodai, Nada-ku 38402Saint-Martin-dHe`res,FranceKobe657-8501,Japan Thierry.Gallay@ujf-grenoble.fr yasunori@math.kobe-u.ac.jp February 17, 2012
Abstract We consider the incompressible Navier-Stokes equations in a two-dimensional exterior domain Ω, with no-slip boundary conditions. Our initial data are of the form u 0 = α Θ 0 + v 0 , where Θ 0 is the Oseen vortex with unit circulation at infinity and v 0 is a solenoidal perturbation belonging to L 2 (Ω) 2 L q (Ω) 2 for some q (1 2). If α R is sufficiently small, we show that the solution behaves asymptotically in time like the self-similar Oseen vortex with circulation α . This is a global stability result, in the sense that the perturbation v 0 can be arbitrarily large, and our smallness assumption on the circulation α is independent of the domain Ω.
1 Introduction Let Ω R 2 be a smooth exterior domain, namely an unbounded connected open subset of the Euclidean plane with a smooth compact boundary Ω. We consider the free motion of an incompressible viscous fluid in Ω, with no-slip boundary conditions on Ω. The evolution is governed by the Navier-Stokes equations u t ( ux+ t ( u  ∇ ) u = Δ u − ∇ p  div u = 0 for x Ω  t > 0 ) = 0 for x Ω  t > 0 (1) u ( x 0) = u 0 ( x ) for x Ω where u ( x t ) R 2 denotes the velocity of a fluid particle at point x Ω and time t > 0, and p ( x t ) is the pressure in the fluid at the same point. For simplicity, both the kinematic viscosity and the density of the fluid have been normalized to 1. The initial velocity field u 0 : Ω R 2 is assumed to be divergence-free and tangent to the boundary on Ω. If the initial velocity u 0 belongs to the energy space L 2 σ (Ω) = { u L 2 (Ω) 2 | div u = 0 in Ω  u n = 0 on Ω } where n denotes here the unit normal on Ω, then it is known that system (1) has a unique global solution u C 0 ([0 ); L σ 2 (Ω)) C 1 ((0 ); L σ 2 (Ω)) C 0 ((0 ); H 01 (Ω) 2 H 2 (Ω) 2 ), which 1
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text