UNE TECHNIQUE DE DIVISION
5 pages
Français

UNE TECHNIQUE DE DIVISION

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
5 pages
Français
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

UNE TECHNIQUE DE DIVISION Arnaud Gazagnes Résumé Des algorithmes permettant d'effectuer des divisions apparaîssent sous forme versifiée en Chine vers la fin de la Dynastie des Song (XIe siècle). Ce style est largement répandu dans les écrits à partir de la Dynastie des Ming (1368-1644). Nous allons nous intéresser à l'un des ces algorithmes – l'utilisation des jiugui – donné dans un ouvrage de 1592. 1 Division. Quelques règles : les juigui 1.1 Des comptines Les règles jiugui (qui sont en fait des chants correspondant aux manipulations des baguettes à clacul ou de boules sur un boulier) consistent en de courtes formules correspondant à la division d'un nombre quelconque par un diviseur compris entre 2 et 9 ; le terme jiugui se traduit par neuf retours. Elles ont probablement été inventées autour du XIe siècle ; on les trouve dans un ouvrage datant de cette époque, le Zhinan Suanfa. Les jiugui montrent un remarquable sens d'économie et de simplicité ; le calculateur a « seule- ment » à se les rappeler : pour la division par n, celui-ci doit mémoriser n comptines, il y a donc 2 + 3 + · · · + 9 = 44 comptines en tout. Cette méthode a d'abord été employée avec un diviseur à un chiffre ; elle a été étendue aux diviseurs inférieurs ou égaux à 99 avec d'autres chants.

  • remarquable sens d'économie et de simplicité

  • règles de multiplication et de soustraction

  • jeu spécial de règles

  • carrefour des mathématiques arabes

  • boule

  • colonne

  • histoire des mathématiques


Sujets

Informations

Publié par
Nombre de lectures 151
Langue Français

Extrait

UNE TECHNIQUE DE DIVISION
ArnaudGazagnes
Resume Des algorithmes permettant d’effectuer des divisions apparassent sous forme versifiÉe en Chine e vers la fin de la Dynastie des Song (XIsiÈcle). Ce style est largement rÉpandu dans les Écrits À partir de la Dynastie des Ming (1368-1644). Nous allons nous intÉresser À l’un des ces algorithmes – l’utilisation desjiugui– donnÉ dans un ouvrage de 1592.
1 Division.Quelques rÈgles : lesjuigui 1.1 Descomptines Les rÈglesjiugui(qui sont en fait des chants correspondant aux manipulations des baguettes À clacul ou de boules sur un boulier) consistent en de courtes formules correspondant À la division d’un nombre quelconque par un diviseur compris entre 2 et 9; le termejiuguise traduit par e neuf retours. Elles ont probablement ÉtÉ inventÉes autour du XIon les trouve dans unsiÈcle ; ouvrage datant de cette Époque, leZhinan Suanfa. Lesjiugui; le calculateur a «seule-montrent un remarquable sens d’Économie et de simplicitÉ ment » À se les rappeler : pour la division parn, celui-ci doit mÉmoriserncomptines, il y a donc 2 + 3 +∙ ∙ ∙+ 9 = 44 comptines en tout. Cette mÉthode a d’abord ÉtÉ employÉe avec un diviseur À un chiffre; elle a ÉtÉ Étendue aux diviseurs infÉrieurs ou Égaux À 99 avec d’autres chants. Il y a alors un jeu spÉcial de rÈgles 1 appelÉfei gui jue. Toutefois les rÈgles gÉnÉrales ne sont pas oubliÉes : lesjiuguisont combinÉes avec les rÈgles de multiplication et de soustraction dans une division. Le principe de vÉrification (multiplication dans le sens inverse) s’appellehuan yuan, littÉralement « restituer l’État initial » [du boulier].
1.2 Desexemples 2 Les rÈgles donnÉes ci-dessous sont extraitesduSuanfa tongzong (LinÉage unifiÉ des mÉthodes mathÉmatiques)(1592).
1.2.1 Divisionpar 3 La colonne de droite indiqueTrois un : trente-et-un. Cette rÈgle provient du fait que la division euclidienne de 10 par 3 donneq= 3 etr= 1, ou encore10 = 3×3 + 1, d’oÙ le « 31 ». La colonne du milieu indiqueTrois deux : soixante-quatre. De mme, la prÉsence du « 62 » s’explique par20 = 6×3 + 2. La colonne de gauche indiqueTrois rencontrÉ : une [unitÉ] ÉlevÉe. 70÷7 = 10; le 1 qui reprÉsente les dizaines est considÉrÉ comme « ÉlevÉ » par rapport aux simples unitÉs.
3 Regardons une mise en œuvre, pratiquementsur la division de 1347 par 3 sur un abaque : 1. «Formules pour la division rapide ». Un exemple est dans le livre de J.-Cl.Martzloff. 2. Jerenvoie le lecteur au document sur la numÉration pour retrouver les nombres prÉsents dans les rÈgles. 3. Illustrationset dÉmarche extraites du livre de J.-Cl.Martzloff.
1
4 1. Lenombre 1347 est placÉ sur l’abaque. ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ 2. Lepremier chiffre À tre traitÉ est le chiffre des milliers, soit 1. On applique la rÈgle « trois un : trente-et-un». Le 1 est remplacÉ par un 3 et une boule est ajoutÉ au chiffre 3 des dizaines. Le nombre lu est alors3 447. • • ◦ ◦ • • ◦ ◦ • • ◦ • ◦ 3. LedeuxiÈme chiffre À tre traitÉ est 4. Il n’y a pas de rÈgle spÉcifique pour la division de 4 par 3 : il y a deux Étapes successives. Dans un premier temps, ce 4 va tre remplacÉ par le plus grand nombre permis par les jiugui. C’est 3. La rÈgle « trois rencontrÉ : un ÉlevÉ » est utilisÉe. Par consÉquent, trois des quatre centaines de boules sont abaissÉes et et une dizaine est ajoutÉe À la plus grande colonne suivante. L’abaque montre maintenant le nombre4 147. • • ◦ ◦ • ◦• ◦ • ◦ Dans un second temps, on s’intÉresse au nombre des centaines. C’est 1. On procÈde comme dans l’Étape 2. L’abaque montre maintenant le nombre4 357. • • ◦ ◦ • • ◦ ◦ • • ◦ • ◦ 4. LetroisiÈme chiffre À tre traitÉ est celui des dizaines, soit 5. On procÈde, comme aupara-vant, en deux temps. Le premier consiste À prendre 3 des 5 dizaines et À ajouter une boule dans la colonne des centaines. L’abaque affiche maintenant le nombre 4427. Le second consiste À remplacer ce2comme nous l’avons vu À l’Étape 2. L’abaque affiche maintenant le nombre 4469. 5. LequatriÈme chiffre À tre traitÉ est celui des unitÉs, soit 9. On applique trois fois la rÈgle « troisun : trente-et-un». Il ne reste alors plus de boule dans la colonne des unitÉs et trois boules ont ÉtÉ rajoutÉes dans la colonne des dizaines. L’abaque affiche maintenant le rÉsultat (entier) de la division : le nombre449.
1.2.2 Divisionpar 7
Sept un : rajoute 3 au suivant. Sept deux : rajoute 6 au suivant. Sept trois : 42. Sept quatre : 55. Sept cinq : 71. Sept six : 84. Sept sept : une [unitÉ] ÉlevÉe.
4. Uneboule placÉe au-dessus de la barre horizontale vaut cinq boules placÉes au-dessous.7 = 1×5 + 2.
2
2 Exemplesd’utilisation avec la division par 8 (Les calculs ont ÉtÉ volontairement dÉcoupÉs, pour plus de clartÉ.)
2.1 Leshuit rÈgles Dans le cas de la division par 8, il y a huit rÈgles et huit seulement.
Huit un : ajoute 2 dessous; Huit deux : ajoute 4 dessous; Huit trois : ajoute 6 dessous; Huit quatre liÉs font 5;
2.2 Divisionde 272 par 8
Huit cinq font 62; Huit six font 74; Huit sept font 86; Huit rencontrÉs font 10 au-dessus.
2 7 2(1) +4 2 11 2(2) +18 3 3 2(3) +6 3 3 8(4) +18 3 4(5) DÉtail des diffÉrentes Étapes : (1) Lepremier chiffre À considÉrer est 2, le chiffre des centaines. On se reporte À la rÈgle «Huit deux : ajoute 4 dessous» (c’est-À-dire dans la colonne suivante) : on ajoute 4 À 7 (le chiffre suivant le 2), ce qui donne 11. (2) Or11 = 1×8 + 3. On retranche donc 8 À 11 et on ajoute 1 À 2 (le chiffre des centaines), ce qui donne 3. (3) LedeuxiÈme chiffre À considÉrer est un 3 (le chiffre des dizaines). On se reporte À la rÈgle «Huit trois : ajoute 6 dessous» : on ajoute 6 À 2 (le chiffre des unitÉs), ce qui donne 8. (4) LetroisiÈme chiffre À considÉrer est un 8. On se reporte À la rÈgle «Huit rencontrÉs font 10 au-dessus» : on ajoute une dizaine de cette entitÉ (qui est ici une unitÉ) au quotient. (5) LerÉsultat est donnÉ : 34.
3
2.3 Divisionde 552 par 8
5 52 (1) 6 +2 6 72 (2) 8 6 6 82 (3) +6 6 88 (4) +18
6 9(5) DÉtail des diffÉrentes Étapes : (1) Lepremier chiffre À prendre en compte est un 5 (celui des centaines). On se reporte À la rÈgle «Huit cinq font 62» : on remplace 5 par 62, en mettant le 6 sous ce premier 5 et le 2 sous le second 5. (2) Onadditionne ce dernier 5 et 2 : on obtient 7. Sur la ligne est maintenant Écrit 672. (3) LedeuxiÈme chiffre À considÉrer est un 7. On se reporte À la rÈgle «Huit sept font 86» : on remplace comme prÉcÉdemment 7 par 86 dans les colonnes adÉquates puis on ajoute 6 À 2, ce qui donne 8. Sur la ligne est maintenant Écrit 688. (4) LetroisiÈme chiffre À considÉrer est un 8. On se reporte À la rÈgle «Huit rencontrÉs font 10 au-dessus» : on ajoute une dizaine de cette entitÉ (qui est ici une unitÉ) au quotient. (5) LerÉsultat est donnÉ : 69.
2.4 Divisionde 3 072 par 8 (sans dÉcoupage) Pour s’entraner.. . 3 07 2 3 67 2 3 7 11 2 3 83 2 3 83 8 3 84 Le rÉsultat est 384.
4
Bibliographie (Sont citÉs pour le lecteur les textes et ouvrages en langues occidentales) Granet, M.,La civilisation chinoise, Coll. « L’Évolution de l’humanitÉ », Albin Michel, 1968 Libbrecht, U.,The Chinese Ta-yen Rule : a Comparative Study, Orientalia Lovaniensa(Lou-vain), 1972 Liu, D.,Nombres et outils de calcul et expressions mathÉmatiques en Chine ancienne, inL’OcÉan Indien au carrefour des mathÉmatiques arabes, chinoises, europÉennes et indiennes, Actes du Colloque, 3-7 novembre 1997, I.U.F.M. de La RÉunion, pp 161-177, 1998 Martzloff, J.-Cl.,Histoire des mathÉmatiques chinoises, Masson, 1983 Martzloff, J.-Cl.,A History of Chinese Mathematics, Springer, 1997 Mikami, Y.,The developpment of mathematics in China and Japan, Chelsea Publishry Compa-gny New York, 1913 Needham, J.,La science chinoise et l’Occident, Ed. du Seuil, 1973 Schrimpf, R.,La collection mathÉmatique Souan King Che Chou, Contribution À l’histoire des mathÉmatiques chinoises des origines au VIIe siÈcle de notre Ère, ThÈse,Rennes, 1963 Yabuuti, K.,Une histoire des mathÉmatiques chinoises, Belin Sciences, 2000 Yamasaki, Y.,History of instrumental Multiplication and Division in China – from the Reckoning-blocks to the Abacus
Ce document a ÉtÉ Écrit À partir de la brochurePromenades mathÉmatiques en Chine Ancienne, Écrite par ArnaudGazagneset publiÉe par l’IREM de Reims en 2005 (ISBN : 2-910076-12-1).
5
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents