62
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe en t'inscrivant gratuitement
Découvre YouScribe en t'inscrivant gratuitement
62
pages
English
Ebook
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Laboratoire de l’Informatique du Parallélisme
École Normale Supérieure de Lyon
oUnité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL n 5668
Minimizing the stretch
when scheduling flows
of divisible requests
Arnaud Legrand,
February 2008Alan Su,
Fr´ed´eric Vivien
oResearch Report N 2008-08
École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France
Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80
Adresse électronique : lip@ens-lyon.frMinimizing the stretch
when scheduling flows
of divisible requests
Arnaud Legrand, Alan Su, Fr´ed´eric Vivien
February 2008
Abstract
In this paper, we consider the problem of scheduling distributed biological se-
quence comparison applications. This problem lies in the divisible load frame-
work with negligible communication costs. Thus far, very few results have
been proposed in this model. We discuss and select relevant metrics for this
framework: namely max-stretch and sum-stretch. We explain the relation-
ship between our model and the preemptive uni-processor case, and we show
how to extend algorithms that have been proposed in the literature for the
uni-processor model to the divisible multi-processor problem domain. We re-
call known results on closely related problems, we show how to minimize the
max-stretch on unrelated machines either in the divisible load model or with
preemption,wederivenewlowerboundsonthecompetitiveratioofanyon-line
algorithm, we present new competitiveness results for existing algorithms, and
we develop several new on-line heuristics. We also address the Pareto opti-
mization of max-stretch. Then, we extensively study the performance of these
algorithms and heuristics in realistic scenarios. Our study shows that all pre-
viously proposed guaranteed heuristics for max-stretch for the uni-processor
model prove to be inefficient in practice. In contrast, we show our on-line
algorithms based on linear programming to be near-optimal solutions for max-
stretch. Our study also clearly suggests heuristics that are efficient for both
metrics, although a combined optimization is in theory not possible in the
general case.
Keywords: Bioinformatics, heterogeneous computing, scheduling, divisible load, linear
programming, stretch
R´esum´eDanscerapport,nousnousint´eressons`al’ordonnancementd’applicationscom-
parant de mani`ere distribu´ee des s´equences biologiques. Ce probl`eme se situe
dans le domaine des taˆches divisibles avec coutˆ s de communications n´egli-
geables. Jusqu’a` pr´esent, tr`es peu de r´esultats ont ´et´e publi´es pour ce mod`ele.
Nous discutons et s´electionnons des m´etriques appropri´ees pour notre cadre de
travail, a` savoir le max-stretch et le sum-stretch. Nous expliquons les relations
entre notre mod`ele et le cadre mono-processeur avec pr´eemption, et nous mon-
trons comment ´etendre au cadre des taˆches divisibles sur multi-processeur les
algorithmes propos´es dans la litt´erature pour le cas mono-processeur avec pr´e-
emption.Nousrappelonslesr´esultatsconnuspourdesprobl´ematiquesproches,
nous montrons comment minimiser le max-stretch sur des machines non cor-
r´el´ees (que les taˆches soient divisibles ou simplement pr´eemptibles), nous ob-
tenons de nouvelles bornes inf´erieures de comp´etitivit´e pour tout algorithme
on-line, nous pr´esentons de nouveaux r´esultats de comp´etitivit´e pour des al-
gorithms de la litt´erature, et nous proposons de nouvelles heuristiques on-line.
Nous nous int´eressons ´egalement au probl`eme de la minimisation Pareto du
max-stretch. Ensuite, nous ´etudions, de mani`ere extensive, les performances
de tous ces algorithmes et de toutes ces heuristiques, et ce dans un cadre r´ea-
liste. Notre ´etude montre que les solutions garanties existantes minimisant le
max-stretch sur un processeur sont inefficaces dans notre cadre de travail. Ce-
pendant, nous montrons que nos algorithmes on-line bas´es sur la programma-
tionlin´eaireontdesperformancesprochesdel’optimalpourlemax-stretch.En
outre, notre ´etude sugg`ere clairement les heuristiques qui sont efficaces pour
lesdeuxm´etriques,bienquel’optimisationsimultan´eepourcesdeuxm´etriques
soit en th´eorie impossible dans le cas g´en´eral.
Mots-cl´es: Bioinformatique, ordonnancement, taˆches divisibles, programmation lin´eaire, flot
pond´er´e, plates-formes h´et´erog`enes
21 Introduction
Theproblemofsearchinglarge-scalegenomicandproteomicsequencedatabanksisanincreasingly
important bioinformatics problem. The results we present in this paper concern the deployment
of such applications in heterogeneous parallel computing environments. In the genomic sequence
comparison scenario, the presence of the required databank on a particular node is the sole factor
that constrains task placement decisions. This application is thus part of a larger class of appli-
cations, in which each task in the application workload exhibits an“affinity”for particular nodes
of the targeted computational platform. In this context, task affinities are determined by location
and replication of the sequence databanks in the distributed platform.
Numerous efforts to parallelize biological sequence comparison applications have been realized
(e.g., [13, 15, 32]). These efforts are facilitated by the fact that such biological sequence compari-
son algorithms are typically computationally intensive, embarrassingly parallel workloads. In the
scheduling literature, this computational model is effectively a divisible workload scheduling prob-
lem [9, 11] with negligible communication overheads. The work presented in this paper concerns
thisapplicationmodel, particularlyinthecontextof online scheduling (i.e.,inwhichthescheduler
has no knowledge of any job in the workload in advance of its release date). Thus far, this specific
problem has not been considered in the scheduling literature.
Aside from divisibility, the main difference with classical scheduling problems lies in the fact
that the platforms we target are shared by many users. Consequently, we need to ensure a certain
degree of fairness between the different users and requests. Defining a fair objective that accounts
for the various job characteristics (release date, processing time) is thus the first difficulty to
overcome. After having presented our motivating application and our framework in Section 2, we
reviewvariousclassicalmetricsinSection3andconcludethatthestretch ofajobisanappropriate
basis for evaluation. As a consequence, we mainly focus on the max-stretch and sum-stretch
metrics. To have a good background on related objectives functions and results, in Section 4 we
focusonthemax-flowandsum-flowmetrics. TheninSection5westudysum-stretchoptimization,
in Section 6 offline max-stretch optimization, and in Section 7 Pareto offline optimization of max-
stretch. Building on the previous sections, we focus in Section 8 on the online optimization of
max-stretch. This paper contains no section devoted to the related work as the related work will
bediscussedthroughoutthisarticle. However,wesummarizeintheconclusiontheknownandnew
results on complexity. Finally, we present in Section 9 an experimental evaluation of the different
solutions proposed, and we conclude in Section 10.
The main contributions of this work are:
offline sum-flow and sum-stretch. We show that sum-flow minimization is NP-
P
complete on unrelated machines under the divisible load model (hR|r ,div| Fi is NP-j j
complete). We also show that sum-stretch minimization is NP-complete on one machine
P
withoutpreemptionandalsoonunrelatedmachinesunderthedivisibleloadmodel(h1|r| Sij jP
andhR|r ,div| Si are NP-complete).j j
offline max weighted flow. We present polynomial-time algorithms to solve the mini-
mizationofmaxweightedflow,offline,onunrelatedmachines,inthedivisibleloadmodeland
in the preemptive model:hR|r ;div|maxw Fi andhR|r ;pmtn|maxw Fi are polynomial.j j j j j j
We also propose heuristics to solve the offline Pareto minimization of max weighted flow,
either on one machine or on unrelated machines. We present some cases in which these
heuristics are optimal and we prove that the offline Pareto minimization of max-flow on
unrelated machines is NP-complete.
online sum-stretch and max-stretch. We show that First come, first served (FCFS)
2is Δ -competitive for sum-stretch minimization and Δ-competitive for max-stretch, where
Δ denotes the ratio of the sizes of the largest and shortest jobs submitted to the system. We
also prove that no online algorithm has simultaneously better competitive ratios for these
two metrics.
?
?
?2 A. Legrand , A. Su , F. Vivien
We show that no online algorithm has a competitive ratio less than or equal to 1.19484 for
√
1 2−1the minimization of sum-stretch, or less than or equal to Δ for the minimization of
2
11
3max-stretch. (The previous known bounds were respectively 1.036 and Δ .)
2
Forminimizingthesum-stretchononemachinewithpreemption,weshowthatSmith’sratio
rule —which is then equivalent to shortest processing time— is not a competitive algorithm
and that shorte