Niveau: Secondaire, Lycée, Première
UNIVERSITE HENRI POINCARE NANCY I FACULTE DES SCIENCES EXAMEN DE JANVIER 2010 Licence LCMA - 1ère année Durée du sujet : 3H Analyse 1 - Semestre d'automne Responsable : G. Eguether Calculatrices non autorisées Documents non autorisés Exercice 1 Calculer la dérivée n?ième de la fonction f définie sur ] 0, +∞ [ par f(x) = 1√x . On exprimera le résultat final avec des factorielles. Exercice 2 Soit f une fonction définie et continue sur [u, v ] , dérivable sur ]u, v [ , telle que f(u) = f(v) = 0, et soit a un nombre réel n'appartenant pas à [u, v ] . En introduisant la fonction g définie sur [u, v ] par g(x) = f(x)x? a , montrer qu'il existe c dans ]u, v [ tel que f ?(c) = f(c)c? a . Faire un dessin illustrant le résultat obtenu. Exercice 3 Calculer les intégrales I = pi/4 ∫ 0 dx cos x(sinx + cos x) et J = 1 ∫ 0 x arctan x dx . T.S.V.P 1
- x2e?4x2 ?
- théorème d'encadrement
- croissance comparée des puissances et des exponentielles
- coefficient directeur de la tangente
- positive entre ? √