L2 estimates for the operator on complex manifolds
86
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Découvre YouScribe et accède à tout notre catalogue !
Découvre YouScribe et accède à tout notre catalogue !
86
pages
English
Documents
Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus
Publié par
Langue
English
L2 estimates for the ∂-operator on complex manifolds Jean-Pierre Demailly Universite de Grenoble I Laboratoire de Mathematiques, UMR 5582 du CNRS Institut Fourier, BP74, 38402 Saint-Martin d'Heres, France Abstract. The main goal of these notes is to describe a powerful differential geometric method which yields precise existence theorems for solutions of equations ∂u = v on (pseudoconvex) complex manifolds. The main idea is to combine Hilbert space techniques with a geometric identity known as the Bochner-Kodaira-Nakano identity. The BKN identity relates the complex Laplace operators ∆? and ∆?? associated to ∂ and ∂ with a suitable curvature tensor. The curvature tensor reflects the convexity properties of the manifold, from the viewpoint of complex geometry. In this way, under suitable convexity assumptions, one is able to derive existence theorems for holomorphic functions subject to certain constraints (in the form of L2 estimates). The central ideas go back to Kodaira and Nakano (1954) in the case of compact manifolds, and to Androtti-Vesentini and Hormander (1965) in the case of open manifolds with plurisubharmonic weights. Hormander's estimates can be used for instance to give a quick solution of the Levi problem. They have many other important applications to complex analysis, complex geometry, local algebra and algebraic geometry . . . Important variants of these estimates have been developped in the last two decades.
- let
- linear forms
- differential operators
- imt ? ?
- h1 ?h2
- dzk ?
- lemma
- since domt
- cauchy-riemann equation
Publié par
Langue
English







